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Abstract
We study the zero-point energy of a massless scalar field subject to spheroidal
boundary conditions. Using the zeta-function method, the zero-point energy
is evaluated for small ellipticity. Axially symmetric vector fields are also
considered. The results are interpreted within the context of QCD flux tubes
and the MIT bag model.

PACS numbers: 02.30.Dk, 03.65.Ge, 12.38.Aw, 12.39.Bg

1. Introduction

It is well known that the zero-point energy of a quantum field is highly dependent on the
geometry of any boundary conditions. Many geometries have been studied including spherical,
cylindrical and parallel plates [1]. These three geometries are the limiting cases of spheroidal
geometry. By considering spheroidal geometry we may investigate mathematically how the
zero-point energy changes as the geometry changes. In particular, the sign of the zero-point
energy can be examined.

QCD is often studied phenomenologically in terms of bag models [2]. The zero-point
energy of a spherical bag has already been found [3]. Lattice QCD simulations have shown
that there exist flux tubes between quark–anti-quark pairs and also three quark configurations
[4]. We use spheroidal geometry to model these flux tubes. Using the infrared modified
gluon bag model [5], it is found that the zero-point energy produces an attractive inter-quark
force.

2. Spheroidal geometry

The Cartesian equation for a spheroid is

x2 + y2

a2
+

z2

b2
= 1. (1)

If a < b (a > b), then the spheroid is prolate (oblate). If a = b, then the spheroid is a sphere
of radius a. Prolate spheroidal curvilinear coordinates, (u, v,w), are related to Cartesian
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coordinates by

x = f
√

(u2 − 1)(1 − v2) cos(w) (2)

y = f
√

(u2 − 1)(1 − v2) sin(w) (3)

z = f uv, (4)

where f = √
b2 − a2 and 1 � u < ∞,−1 � v � 1, 0 � w < 2π . In these coordinates,

surfaces of constant u are confocal prolate spheroids. The prolate ellipticity, e, is a measure
of deviation from a sphere and is defined by e = f/b ∈ [0, 1).

3. Scalar field

3.1. Spheroidal functions

We consider a real, massless scalar field, φ, confined within a prolate spheroid with Dirichlet
boundary conditions. The field equation (with h̄ = c = 1) and boundary condition are

(∇2 + ω2)φ = 0, (5)

φ|u=1/e = 0, (6)

where ω is the frequency. It can be shown that (5) is separable in prolate spheroidal coordinates
[6]. Let φ = U(u)V (v)W(w); then (5) separates into three ordinary differential equations(

d

du

(
(u2 − 1)

d

du

)
− λ + c2u2 − µ2

u2 − 1

)
U(u) = 0, (7)

(
d

dv

(
(1 − v2)

d

dv

)
+ λ − c2v2 − µ2

1 − v2

)
V (v) = 0, (8)

(
d2

dw2
+ µ2

)
W(w) = 0, (9)

where c = ωf and µ and λ are separation constants. The solution to (9) is straightforward
and requires µ = m ∈ Z. The solutions to (7) and (8) that are regular and satisfy the
boundary condition are the radial spheroidal function of the first kind, R(1)

m,n(c, u), and the
angular spheroidal function of the first kind, S(1)

m,n(c, v), respectively. Here n is an integer such
that n � |m|. In the spherical limit, (7) reduces to the spherical Bessel differential equation
and (8) reduces to the associated Legendre differential equation. In fact, the radial (angular)
spheroidal functions can be expanded in a basis of spherical Bessel (associated Legendre)
functions [7]

R(1)
m,n(c, u) = (u2 − 1)m/2

um

∞∑
k=−∞

a
m,n
2k (c)jn+2k(cu), (10)

S(1)
m,n(c, v) =

∞∑
k=−∞

d
m,n
2k (c)P m

n+2k(v), (11)

where the coefficients a
m,n
2k (c) and d

m,n
2k (c) satisfy certain three-term recurrence relations.

Angular spheroidal functions are normalized in the same fashion as associate Legendre
functions, whereas the radial spheroidal functions are normalized to have the same asymptotic
form as spherical Bessel functions

R(1)
m,n(c, u)

cu→∞∼ jn(cu). (12)
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The Dirichlet boundary condition can now be written in terms of radial spheroidal functions

R(1)
m,n(zm,n,ke, 1/e) = 0, (13)

where zm,n,k = ωm,n,kb and ωm,n,k is the kth eigenfrequency. Note that b and e are used for the
geometrical variables; however, since only small ellipticity will be considered a and e could
have equally been used.

3.2. Zero-point energy

In terms of the eigenfrequency of a quantum field subject to some boundary condition, the
zero-point energy is

E = 1

2

∑
m,n,k

ωm,n,k. (14)

As expressed above, the zero-point energy is divergent and must be regularized. The prolate
spheroidal zeta function is defined as

ζm,n(s) = (bµ)s
∞∑

k=1

z−s
m,n,k, (15)

where zm,n,k come from (13), µ is an arbitrary scale with mass dimensions and the dependance
on e has been suppressed. As written, (15) is only valid for Re s > 1. The regularized
zero-point energy is defined in terms of a principal part prescription [8],

E ≡ 1

2
µPPs→−1

[∑
m,n

ζm,n(s)

]
. (16)

Clearly, knowledge of the prolate spheroidal zeta function as s → −1 is required. Fortunately,
ζ(s) may be analytically continued to the region −1 < Re s < 0. Using the argument principal,
(15) may be rewritten as

ζm,n(s) = (bµ)s
s

2π i

∫
C

dz z−s−1 ln
(
R(1)

m,n(ze, 1/e)
)
, (17)

where the contour encloses all the zeros of R(1)
m,n(ze, 1/e). Because the radial spheroidal

functions have the same asymptotic form as the spherical Bessel functions, we can follow an
analogous argument to Romeo [9], arriving at an integral expression for the spheroidal zeta
function valid for −1 < Re s < 0,

ζm,n(s) = (bµ)s
s

π
sin

(πs

2

) ∫ ∞

0
dx x−s−1 ln

(
2x exp(−x)T (1)

m,n(xe, 1/e)
)
, (18)

where T (1)
m,n(xe, 1/e) are the modified radial prolate spheroidal functions, modified in the same

fashion as the modified spherical Bessel functions. If we make a Taylor expansion for small
ellipticity, then

∑
m,n

ζm,n(s) = (bµ)s
s

π
sin

(πs

2

) ∞∑
n=0

2νs+1
∫ ∞

0
dxx−s−1 ln (2 exp(−νx)sn(νx))

+

[
(bµ)s

s

π
sin

(πs

2

) ∞∑
n=0

νs

∫ ∞

0
dxx−s−1 2ν

3

(
1 − xs ′

n(νx)

sn(νx)

)]
e2 + O(e4),

(19)
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where ν = n + 1/2 and sn(νx) are the Riccati–Bessel functions of imaginary argument. The
first term in (19) is simply the spherical zeta function and has already been evaluated [9]; the
second term is new and represents the first-order correction to the spheroidal zeta function for
small ellipticity. To evaluate the second term, the standard procedure is followed. Using the
uniform asymptotic expansion of the modified spherical Bessel functions [10], the asymptotic
form of the integrand is added and subtracted. The integrand is expanded to O(ν−5), which
is the same order as in [9]. The integral of the added terms can be expressed in terms of beta
functions and the integral of the subtracted terms can be evaluated numerically. The sums over
n can be expressed in terms of Riemann zeta functions. The result, when Laurent expanded
around s = −1, is∑
m,n

ζ(s) = 1

bµ

(
2

315π

(
1

s + 1
+ ln(bµ)

)
+ 0.0089

)
+ O(s + 1)

+

[
1

bµ

(
2

945π

(
1

s + 1
+ ln(bµ)

)
+ 0.0023

)
+ O(s + 1)

]
e2 + O(e4). (20)

Thus, using (16),

EI(µ) = 1

2b

(
2

315π
ln(bµ) + 0.0089

)
+

[
1

2b

(
2

945π
ln(bµ) + 0.0023

)]
e2 + O(e4), (21)

where the superscript I signifies that this is the zero-point energy for internal eigenfrequency
only.

If the field is confined to the outside of a prolate spheroid by Dirichlet boundary conditions,
then the exterior eigenfrequencies are found. The exterior zero-point energy can be calculated
using an analogous spheroidal zeta function. If internal and external eigenfrequencies are
considered together, then the total zero-point energy is

Eprolate = 1

2b
(0.0056 + 0.0019e2) + O(e4). (22)

As in the spherical case, there is no pole at s = −1 in the total prolate spheroidal zeta function,
so the principal part prescription is not needed. The total zero-point energy is independent of
the mass scale.

The zero-point energy of a real, massless scalar field subject to the same boundary
conditions but on the surface of an oblate spheroid has also been calculated [11]. We quote
here the result for the total energy

Eoblate = 1

2b
(0.0056 − 0.0019ẽ2) + O(ẽ4), (23)

where ẽ2 = a2/b2 −1 and is related to the oblate ellipticity. In both (22) and (23) the spherical
part agrees with [12].

3.3. Green’s functions

The results of the previous section can be confirmed using the Green’s function approach. If
all space is considered, then the zero-point energy is given by [13]

E ≡ lim
x ′→x

1

2i

∫
dω

2π
e−iω(t−t ′)

∫
dr2ω2g(r, r′), (24)

where g(r, r′) is the reduced Green’s function, which satisfies

(∇2 + ω2)g(r, r′) = −δ(r − r′). (25)
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Figure 1. Total zero-point energy of a scalar field subject to Dirichlet conditions on a prolate
spheroidal (a) and an oblate spheroid (b) of small ellipticity. The dashed lines represent preliminary
O(e4) results.

The g(r, r′) that satisfies the Dirichlet boundary condition on the surface of a prolate
spheroid is

g(r, r′) = −iω
∑
m,n

Xm,n(c, v,w)X∗
m,n(c, v

′, w′)

{
AR(1)

m,n(c, u)R(1)
m,n(c, u

′) u, u′ < 1/e

BR(3)
m,n(c, u)R(3)

m,n(c, u
′) u, u′ > 1/e,

(26)

where the coefficients are

A = B−1 = R(3)
m,n(c, 1/e)

R
(1)
m,n(c, 1/e)

(27)

and R(3)
m,n(c, u) are the radial prolate spheroidal functions of the third kind, which are given by

equation (10) with spherical Hankel functions of the first kind, h(1)
n (cu), as the basis functions

(instead of jn(cu)). The prolate spheroidal harmonics are

Xm,n(c, v,w) =
√

2n + 1

4π

(n − m)!

(n + m)!
S(1)

m,n(c, v) eimw. (28)

If we expand (24) for small ellipticity and expand the resulting integrands asymptotically to
O(ν−2) the result agrees with (22) to four decimal places.

3.4. Results

The results are shown in figure 1. The preliminary O(e4) results (dashed lines) reinforce that
(22) and (23) are only valid for small ellipticity.

It can be seen that 2bEprolate increases as the sphere is deformed. While a direct comparison
to the limiting geometry (infinite circular cylinder) cannot be made as the results are only valid
for small ellipticity, the sign of Eprolate/2b agrees with [14].

In the oblate case, the zero-point energy becomes negative. Again, this is expected since
the zero-point energy per unit area of two parallel plates is negative [1]. The precise point at
which the zero-point energy is zero is outside the region where these results are valid. Work
is currently being done to find this point.

4. Vector field

The vector Helmholtz equation cannot be solved by separation of variables in prolate spheroidal
coordinates [6]. However, if the vector field is axially symmetric, then it can be separated
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into TE and TM modes. The TE and TM boundary conditions for an axially symmetric field
confined within a perfectly conducting prolate spheroid cavity are, respectively,

R
(1)
1,n(c, u)

∣∣
u=1/e

= 0, (29)

∂

∂u

(√
u2 − 1R

(1)
1,n(c, u)

)∣∣∣∣
u=1/e

= 0. (30)

It should be noted that, due to the assumed axial symmetry, the radial spheroidal functions
have m = 1 and now n ∈ Z

+. Adding the contributions from both the TE and TM modes and
using (16), the internal zero-point energy of an axially symmetric vector field is [11]

EI
V(µ) = 1

2b

(
16

315π
ln(bµ) + 0.168

)
+

[
1

2b
(0.037 ln(bµ) − 0.057)

]
e2 + O(e4). (31)

In this calculation the integrands were expanded asymptotically to O(ν−2). The spherical part
agrees with [15].

4.1. QCD

Assuming the infrared modified gluon bag model [5], the internal zero-point energy of a colour
field is approximately

EI
QCD ≈ −8EI

V, (32)

where the factor of 8 comes from the eight gluon fields. The minus sign comes from modifying
the free gluon propagator to one which vanishes in the infrared region.

We model an inter-quark flux tube by a prolate spheroidal cavity with bag-like boundary
conditions. Using (32), the QCD zero-point energy is approximately

EI
QCD ≈ 1

2b
(−1.34 + 0.45e2) + O(e4), (33)

where the scale independent part of (31) has been used and thus we must assume that the colour
fields are axially symmetric. If the flux tube is stretched, then (33) implies that the zero-point
energy increases. Therefore, the zero-point energy contributes an attractive inter-quark force.
The result also suggests that spherical bags are stable against deformations.
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